本文目录一览:
openai使用了不受支持的协议
您想问的是openai是否使用了不受支持的协议吗?没有。
OpenAI在发表出版物和研究成果时,遵从开放许可证,如MIT、Apache等,同样也积极寻求合适的许可证,以便公开分享和使用OpenAI的研究成果。因此,OpenAI在使用协议和许可证上一直都非常谨慎和规范,以避免出现不受支持的协议。
OpenAI是一家人工智能研究机构,OpenAI的研究成果和出版物都得到了广泛关注和应用。在使用开源软件和开放许可证的同时,OpenAI也十分重视知识产权保护,避免侵犯他人的知识产权。对于任何可能存在违反协议的情况,OpenAI都会积极采取措施进行调查和处理。
openai能当爬虫使吗
你好,可以的,Spinning Up是OpenAI开源的面向初学者的深度强化学习资料,其中列出了105篇深度强化学习领域非常经典的文章, 见 Spinning Up:
博主使用Python爬虫自动爬取了所有文章,而且爬下来的文章也按照网页的分类自动分类好。
见下载资源:Spinning Up Key Papers
源码如下:
import os
import time
import urllib.request as url_re
import requests as rq
from bs4 import BeautifulSoup as bf
'''Automatically download all the key papers recommended by OpenAI Spinning Up.
See more info on:
Dependency:
bs4, lxml
'''
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'
}
spinningup_url = ''
paper_id = 1
def download_pdf(pdf_url, pdf_path):
"""Automatically download PDF file from Internet
Args:
pdf_url (str): url of the PDF file to be downloaded
pdf_path (str): save routine of the downloaded PDF file
"""
if os.path.exists(pdf_path): return
try:
with url_re.urlopen(pdf_url) as url:
pdf_data = url.read()
with open(pdf_path, "wb") as f:
f.write(pdf_data)
except: # fix link at [102]
pdf_url = r""
with url_re.urlopen(pdf_url) as url:
pdf_data = url.read()
with open(pdf_path, "wb") as f:
f.write(pdf_data)
time.sleep(10) # sleep 10 seconds to download next
def download_from_bs4(papers, category_path):
"""Download papers from Spinning Up
Args:
papers (bs4.element.ResultSet): 'a' tags with paper link
category_path (str): root dir of the paper to be downloaded
"""
global paper_id
print("Start to ownload papers from catagory {}...".format(category_path))
for paper in papers:
paper_link = paper['href']
if not paper_link.endswith('.pdf'):
if paper_link[8:13] == 'arxiv':
# paper_link = ""
paper_link = paper_link[:18] + 'pdf' + paper_link[21:] + '.pdf' # arxiv link
elif paper_link[8:18] == 'openreview': # openreview link
# paper_link = ""
paper_link = paper_link[:23] + 'pdf' + paper_link[28:]
elif paper_link[14:18] == 'nips': # neurips link
paper_link = ""
else: continue
paper_name = '[{}] '.format(paper_id) + paper.string + '.pdf'
if ':' in paper_name:
paper_name = paper_name.replace(':', '_')
if '?' in paper_name:
paper_name = paper_name.replace('?', '')
paper_path = os.path.join(category_path, paper_name)
download_pdf(paper_link, paper_path)
print("Successfully downloaded {}!".format(paper_name))
paper_id += 1
print("Successfully downloaded all the papers from catagory {}!".format(category_path))
def _save_html(html_url, html_path):
"""Save requested HTML files
Args:
html_url (str): url of the HTML page to be saved
html_path (str): save path of HTML file
"""
html_file = rq.get(html_url, headers=headers)
with open(html_path, "w", encoding='utf-8') as h:
h.write(html_file.text)
def download_key_papers(root_dir):
"""Download all the key papers, consistent with the categories listed on the website
Args:
root_dir (str): save path of all the downloaded papers
"""
# 1. Get the html of Spinning Up
spinningup_html = rq.get(spinningup_url, headers=headers)
# 2. Parse the html and get the main category ids
soup = bf(spinningup_html.content, 'lxml')
# _save_html(spinningup_url, 'spinningup.html')
# spinningup_file = open('spinningup.html', 'r', encoding="UTF-8")
# spinningup_handle = spinningup_file.read()
# soup = bf(spinningup_handle, features='lxml')
category_ids = []
categories = soup.find(name='div', attrs={'class': 'section', 'id': 'key-papers-in-deep-rl'}).\
find_all(name='div', attrs={'class': 'section'}, recursive=False)
for category in categories:
category_ids.append(category['id'])
# 3. Get all the categories and make corresponding dirs
category_dirs = []
if not os.path.exitis(root_dir):
os.makedirs(root_dir)
for category in soup.find_all(name='h2'):
category_name = list(category.children)[0].string
if ':' in category_name: # replace ':' with '_' to get valid dir name
category_name = category_name.replace(':', '_')
category_path = os.path.join(root_dir, category_name)
category_dirs.append(category_path)
if not os.path.exists(category_path):
os.makedirs(category_path)
# 4. Start to download all the papers
print("Start to download key papers...")
for i in range(len(category_ids)):
category_path = category_dirs[i]
category_id = category_ids[i]
content = soup.find(name='div', attrs={'class': 'section', 'id': category_id})
inner_categories = content.find_all('div')
if inner_categories != []:
for category in inner_categories:
category_id = category['id']
inner_category = category.h3.text[:-1]
inner_category_path = os.path.join(category_path, inner_category)
if not os.path.exists(inner_category_path):
os.makedirs(inner_category_path)
content = soup.find(name='div', attrs={'class': 'section', 'id': category_id})
papers = content.find_all(name='a',attrs={'class': 'reference external'})
download_from_bs4(papers, inner_category_path)
else:
papers = content.find_all(name='a',attrs={'class': 'reference external'})
download_from_bs4(papers, category_path)
print("Download Complete!")
if __name__ == "__main__":
root_dir = "key-papers"
download_key_papers(root_dir)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
openai国内如何使用
用法如下。
OpenAI在国内也有不少的普及应用,大家都知道OpenAI是一家人工智能学习开发公司,成立于2015年,由ElonMusk,GregBrockman,IlyaSutskever和SamAltman等四位创始人共同创办。OpenAI的主要目标是使AI技术的发展走向更平衡、更公平的方向,探索人工智能在各个领域的应用,帮助人们了解AI技术,以便更好地应用它们。
openai独享一人一号,每个都带api密钥key。
怎么用openai写论文
要使用openai写论文首先是要安装好al小助手,要下载al text generator 的插件,然后安装并且配置好ai小助手,接着是要生成和管理apl的密钥了,也就是登录的密码,然后在使用ai编辑器编辑文件文本,最后通过数据元方式输出就可以了。
openai怎么调中文
1、首先进入电脑屏幕操控界面,打开OPENIV,单击红框。
2、其次点击openIVoptions。
3、然后点击language后出现语言设置界面。
4、最后设置界面会弹出各种语言的选择栏,选择简体中文按close即可。